Training Efficient Tree-Based Models for Document Ranking
نویسندگان
چکیده
Gradient-boosted regression trees (GBRTs) have proven to be an effective solution to the learning-to-rank problem. This work proposes and evaluates techniques for training GBRTs that have efficient runtime characteristics. Our approach is based on the simple idea that compact, shallow, and balanced trees yield faster predictions: thus, it makes sense to incorporate some notion of execution cost during training to “encourage” trees with these topological characteristics. We propose two strategies for accomplishing this: the first, by directly modifying the node splitting criterion during tree induction, and the second, by stagewise tree pruning. Experiments on a standard learning-to-rank dataset show that the pruning approach is superior; one balanced setting yields an approximately 40% decrease in prediction latency with minimal reduction in output quality as measured by NDCG.
منابع مشابه
An Ensemble Click Model for Web Document Ranking
Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...
متن کاملFP-Rank: An Effective Ranking Approach Based on Frequent Pattern Analysis
Ranking documents in terms of their relevance to a given query is fundamental to many real-life applications such as document retrieval and recommendation systems. Extensive studies in this area have focused on developing efficient ranking models. While ranking models are usually trained based on given training datasets, besides model training algorithms, the quality of the document features se...
متن کاملRanking Efficient Decision Making Units Using Cooperative Game Theory Based on SBM Input-Oriented Model and Nucleolus Value
In evaluating the efficiency of decision making units (DMUs) by Data Envelopment Analysis (DEA) models, may be more than one DMU has an efficiency score equal to one. Since ranking of efficient DMUs is essential for decision makers, therefore, methods and models for this purpose are presented. One of ranking methods of efficient DMUs is cooperative game theory. In this study, Lee and Lozano mod...
متن کاملRanking of Efficient and Non-Efficient Decision Making Units with Undesirable Data Based on Combined Models of DEA and TOPSIS
Data Envelopment Analysis (DEA) is a method for determining the performance of units under evaluation of DMUs. Each decision-making unit using multiple inputs produces multiple outputs whose nature of outputs may be desirable or undesirable. Units whose performance score equals one are efficient. The concept of ranking decision makers because of the useful information they provide to decision m...
متن کاملA New Method for Ranking Extreme Efficient DMUs Based on Changing the Reference Set with Using L2 - Norm
The purpose of this study is to utilize a new method for ranking extreme efficient decision making units (DMUs) based upon the omission of these efficient DMUs from reference set of inefficient and non-extreme efficient DMUs in data envelopment analysis (DEA) models with constant and variable returns to scale. In this method, an L2- norm is used and it is believed that it doesn't have any e...
متن کامل